Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.616
1.
BMJ Open Ophthalmol ; 9(1)2024 May 03.
Article En | MEDLINE | ID: mdl-38702178

BACKGROUND: Dry eye disease is the most commonplace multifractional ocular complication, which has already affected millions of people in the world. It is identified by the excessive buildup of reactive oxygen species, leading to substantial corneal epithelial cell demise and ocular surface inflammation attributed to TLR4. In this study, we aimed to identify potential compounds to treat of dry eye syndrome by exploring in silico methods. METHODS: In this research, molecular docking and dynamics simulation tests were used to examine the effects of selected compounds on TLR4 receptor. Compounds were extracted from different databases and were prepared and docked against TLR4 receptor via Autodock Vina. Celastrol, lumacaftor and nilotinib were selected for further molecular dynamics studies for a deeper understanding of molecular systems consisting of protein and ligands by using the Desmond module of the Schrodinger Suite. RESULTS: The docking results revealed that the compounds are having binding affinity in the range of -5.1 to -8.78 based on the binding affinity and three-dimensional interactions celastrol, lumacaftor and nilotinib were further studied for their activity by molecular dynamics. Among the three compounds, celastrol was the most stable based on molecular dynamics trajectory analysis from 100 ns in the catalytic pockets of 2Z63.pdb.pdb. Root mean square deviation of celastrol/2Z63 was in the range of 1.8-4.8 Å. CONCLUSION: In particular, Glu376 of TLR4 receptor is crucial for the identification and binding of lipopolysaccharides (LPS), which are part of Gram-negative bacteria's outer membrane. In our investigation, celastrol binds to Glu376, suggesting that celastrol may prevent the dry eye syndrome by inhibiting LPS's binding to TLR4.


Dry Eye Syndromes , Molecular Docking Simulation , Molecular Dynamics Simulation , Pentacyclic Triterpenes , Pyrimidines , Toll-Like Receptor 4 , Dry Eye Syndromes/drug therapy , Toll-Like Receptor 4/antagonists & inhibitors , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/chemistry , Humans , Pentacyclic Triterpenes/pharmacology , Pentacyclic Triterpenes/chemistry , Pentacyclic Triterpenes/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Triterpenes/pharmacology , Triterpenes/chemistry , Computer Simulation , Ligands , Aminopyridines/pharmacology , Aminopyridines/chemistry , Aminopyridines/therapeutic use
2.
Nat Prod Res ; 38(11): 1956-1960, 2024 Jun.
Article En | MEDLINE | ID: mdl-38739565

Magonia pubescens is a natural species from the Brazilian cerrado biome. Its fruits and seeds are used in the treatment of seborrheic dermatitis, a common inflammatory skin disease. In this work, the known compounds lapachol, stigmasterol, maniladiol and scopoletin were isolated from hexane and dichloromethane extracts of M. pubescens branches. The aqueous extract of this material was fractioned through a liquid-liquid partition and the obtained fractions were analyzed by UHPLC-MS/MS. The results obtained were compared with data from three databases, leading to the putative identification of 51 compounds from different classes, including flavonoids, saponins and triterpenes. The cytotoxicity of aqueous fractions was assayed against breast cancer (MDA-MB-231) and leukemia (THP-1 and K562) cells. The best activity was observed for fraction AE3 against MDA-MB-231 cells (IC50 30.72 µg.mL-1).


Antineoplastic Agents, Phytogenic , Breast Neoplasms , Phytochemicals , Plant Extracts , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Breast Neoplasms/drug therapy , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Cell Line, Tumor , Female , Phytochemicals/pharmacology , Phytochemicals/chemistry , Triterpenes/pharmacology , Triterpenes/chemistry , Brazil , Leukemia/drug therapy , Flavonoids/pharmacology , Flavonoids/chemistry , K562 Cells , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry , Saponins/pharmacology , Saponins/chemistry , THP-1 Cells , Molecular Structure
3.
Eur J Pharmacol ; 973: 176564, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38614383

Pulmonary arterial hypertension (PAH) is a progressive and life-threatening disease that is characterized by vascular remodeling of the pulmonary artery. Pulmonary vascular remodeling is primarily caused by the excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), which are facilitated by perivascular inflammatory cells including macrophages. Corosolic acid (CRA) is a natural pentacyclic triterpenoid that exerts anti-inflammatory effects. In the present study, the effects of CRA on the viability of macrophages were examined using monocrotaline (MCT)-induced PAH rats and human monocyte-derived macrophages. Although we previously reported that CRA inhibited signal transducer and activator of transcription 3 (STAT3) signaling and ameliorated pulmonary vascular remodeling in PAH, the inhibitory mechanism remains unclear. Therefore, the underlying mechanisms were investigated using PASMCs from idiopathic PAH (IPAH) patients. In MCT-PAH rats, CRA inhibited the accumulation of macrophages around remodeled pulmonary arteries. CRA reduced the viability of human monocyte-derived macrophages. In IPAH-PASMCs, CRA attenuated cell proliferation and migration facilitated by platelet-derived growth factor (PDGF)-BB released from macrophages and PASMCs. CRA also downregulated the expression of PDGF receptor ß and its signaling pathways, STAT3 and nuclear factor-κB (NF-κB). In addition, CRA attenuated the phosphorylation of PDGF receptor ß and STAT3 following the PDGF-BB simulation. The expression and phosphorylation levels of PDGF receptor ß after the PDGF-BB stimulation were reduced by the small interfering RNA knockdown of NF-κB, but not STAT3, in IPAH-PASMCs. In conclusion, CRA attenuated the PDGF-PDGF receptor ß-STAT3 and PDGF-PDGF receptor ß-NF-κB signaling axis in macrophages and PASMCs, and thus, ameliorated pulmonary vascular remodeling in PAH.


Cell Movement , Cell Proliferation , Macrophages , Myocytes, Smooth Muscle , STAT3 Transcription Factor , Signal Transduction , Triterpenes , Triterpenes/pharmacology , Triterpenes/therapeutic use , Animals , Signal Transduction/drug effects , Humans , STAT3 Transcription Factor/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Rats , Macrophages/drug effects , Macrophages/metabolism , Male , Cell Movement/drug effects , Cell Proliferation/drug effects , Rats, Sprague-Dawley , Pulmonary Artery/drug effects , Pulmonary Artery/pathology , Pulmonary Artery/metabolism , Platelet-Derived Growth Factor/metabolism , Cell Survival/drug effects , Monocrotaline , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Becaplermin/pharmacology , Vascular Remodeling/drug effects , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology
4.
Medicine (Baltimore) ; 103(16): e37846, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38640324

The current study aimed to investigate the potential role of astragaloside IV (AS-IV) in improving cellular lipid deposition and its underlying mechanism. A fatty liver cell model was established by treating hepatoma cells with palmitic acid. AS-IV and SC79 were used for treatment. Oil Red O staining was applied to detect intracellular lipid deposition, and transmission electron microscopy was utilized to assess autophagosome formation. Immunofluorescence double staining was applied to determine microtubule-associated proteins 1A/1B light chain 3 (LC3) expression. Western blot analysis was performed to detect the expression of LC3, prostacyclin, Beclin-1, V-akt murine thymoma viral oncogene homolog (Akt), phosphorylated Akt, mTOR, and phosphorylated mTOR. Oil Red O staining revealed that AS-IV reduced intracellular lipid accumulation. Further, it increased autophagosome synthesis and the expression of autophagy proteins LC3 and Beclin-1 in the cells. It also reduced the phosphorylation levels of Akt and mTOR and the levels of prostacyclin. However, the effects of AS-IV decreased with SC79 treatment. In addition, LC3B + BODIPY493/503 fluorescence double staining showed that AS-IV reduced intracellular lipid deposition levels by enhancing autophagy. AS-IV can reduce lipid aggregation in fatty liver cells, which can be related to enhanced hepatocyte autophagy by inhibiting the Akt/mTOR signaling pathway.


Autophagy , Fatty Liver , Lipid Metabolism , Saponins , Triterpenes , Animals , Humans , Mice , Autophagy/drug effects , Azo Compounds , Beclin-1/metabolism , Fatty Liver/drug therapy , Lipids , Prostaglandins I , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Saponins/pharmacology , TOR Serine-Threonine Kinases/drug effects , TOR Serine-Threonine Kinases/metabolism , Triterpenes/pharmacology , Lipid Metabolism/drug effects
5.
Eur J Pharmacol ; 972: 176560, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38604543

Obese asthma is a unique asthma phenotype that decreases sensitivity to inhaled corticosteroids, and currently lacks efficient therapeutic medication. Celastrol, a powerful bioactive substance obtained naturally from the roots of Tripterygium wilfordii, has been reported to possess the potential effect of weight loss in obese individuals. However, its role in the treatment of obese asthma is not fully elucidated. In the present study, diet-induced obesity (DIO) mice were used with or without ovalbumin (OVA) sensitization, the therapeutic effects of celastrol on airway hyperresponsiveness (AHR) and airway inflammation were examined. We found celastrol significantly decreased methacholine-induced AHR in obese asthma, as well as reducing the infiltration of inflammatory cells and goblet cell hyperplasia in the airways. This effect was likely due to the inhibition of M1-type alveolar macrophages (AMs) polarization and the promotion of M2-type macrophage polarization. In vitro, celastrol yielded equivalent outcomes in Lipopolysaccharide (LPS)-treated RAW264.7 macrophage cells, featuring a reduction in the expression of M1 macrophage makers (iNOS, IL-1ß, TNF-α) and heightened M2 macrophage makers (Arg-1, IL-10). Mechanistically, the PI3K/AKT signaling pathway has been implicated in these processes. In conclusion, we demonstrated that celastrol assisted in mitigating various parameters of obese asthma by regulating the balance of M1/M2 AMs polarization.


Asthma , Macrophages, Alveolar , Obesity , Pentacyclic Triterpenes , Triterpenes , Animals , Asthma/drug therapy , Pentacyclic Triterpenes/pharmacology , Obesity/drug therapy , Obesity/complications , Mice , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Triterpenes/pharmacology , Triterpenes/therapeutic use , RAW 264.7 Cells , Inflammation/drug therapy , Inflammation/pathology , Proto-Oncogene Proteins c-akt/metabolism , Respiratory Hypersensitivity/drug therapy , Signal Transduction/drug effects , Male , Phosphatidylinositol 3-Kinases/metabolism , Mice, Inbred C57BL , Ovalbumin , Cell Polarity/drug effects
6.
Neuropharmacology ; 252: 109939, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38570065

To investigate the efficacy of Ursolic acid in alleviating neuropathic pain in rats with spinal nerve ligation (SNL), the SNL rat model was surgically induced. Different concentrations of Ursolic acid and manipulated target mitogen-activated protein kinase 1 (MAPK1) were administered to the SNL rats. Fecal samples were collected from each group of rats for 16S rDNA analysis to examine the impact of gut microbiota. Molecular docking experiments were conducted to assess the binding energy between Ursolic acid and MAPK1. In vivo studies were carried out to evaluate the expression of inflammatory factors and signaling pathways in spinal cord and colon tissues. Ursolic acid was found to have a beneficial effect on pain reduction in rats by increasing plantar withdrawal latency (PWL) and paw withdrawal threshold (PWT). Comparing the Ursolic acid group with the control group revealed notable differences in the distribution of Staphylococcus, Allobaculum, Clostridium, Blautia, Bifidobacterium, and Prevotella species. Network pharmacology analysis identified MAPK1 and intercellular adhesion molecule-1 (ICAM1) as common targets for Ursolic acid, SNL, and neuropathic pain. Binding sites between Ursolic acid and these targets were identified. Additionally, immunofluorescent staining showed a decrease in GFAP and IBA1 intensity in the spinal cord along with an increase in NeuN following Ursolic acid treatment. Overexpression of MAPK1 in SNL rats led to an increase in inflammatory factors and a decrease in PWL and PWT. Furthermore, MAPK1 counteracted the pain-relieving effects of Ursolic acid in SNL rats. Ursolic acid was found to alleviate neuropathic pain in SNL rats by targeting MAPK1 and influencing gut microbiota homeostasis.


Antigens, Nuclear , Gastrointestinal Microbiome , Mitogen-Activated Protein Kinase 1 , Nerve Tissue Proteins , Neuralgia , Rats, Sprague-Dawley , Triterpenes , Ursolic Acid , Animals , Neuralgia/drug therapy , Neuralgia/metabolism , Triterpenes/pharmacology , Gastrointestinal Microbiome/drug effects , Male , Mitogen-Activated Protein Kinase 1/metabolism , Rats , Spinal Cord/drug effects , Spinal Cord/metabolism , Molecular Docking Simulation , Disease Models, Animal , Spinal Nerves/drug effects , Analgesics/pharmacology , Colon/drug effects , Colon/microbiology , Colon/metabolism , Glial Fibrillary Acidic Protein/metabolism
7.
Molecules ; 29(7)2024 Apr 05.
Article En | MEDLINE | ID: mdl-38611920

Six new 2α-hydroxy ursane triterpenoids, 3α-cis-p-coumaroyloxy-2α,19α-dihydroxy-12-ursen-28-oic acid (1), 3α-trans-p-coumaroyloxy-2α,19α-dihydroxy-12-ursen-28-oic acid (2), 3α-trans-p-coumaroyloxy-2α-hydroxy-12-ursen-28-oic acid (3), 3ß-trans-p-coumaroyloxy-2α-hydroxy-12,20(30)-ursadien-28-oic acid (4), 3ß-trans-feruloyloxy-2α-hydroxy-12,20(30)-ursadien-28-oic acid (5), and 3α-trans-feruloyloxy-2α-hydroxy-12,20(30)-ursadien-28-oic acid (6), along with eleven known triterpenoids (7-17), were isolated from the leaves of Diospyros digyna. Their chemical structures were elucidated by comprehensive analysis of UV, IR, HRESIMS, and NMR spectra. All the isolated compounds were evaluated for their PTP1B inhibitory activity. 3ß-O-trans-feruloyl-2α-hydroxy-urs-12-en-28-oic acid (13) showed the best inhibition activity with an IC50 value of 10.32 ± 1.21 µM. The molecular docking study found that the binding affinity of compound 13 for PTP1B was comparable to that of oleanolic acid (positive control).


Diospyros , Triterpenes , Molecular Docking Simulation , Plant Leaves , Hydroxy Acids , Triterpenes/pharmacology
8.
Int J Mol Sci ; 25(7)2024 Apr 04.
Article En | MEDLINE | ID: mdl-38612831

Many people around the world suffer from neurodegenerative diseases associated with cognitive impairment. As life expectancy increases, this number is steadily rising. Therefore, it is extremely important to search for new treatment strategies and to discover new substances with potential neuroprotective and/or cognition-enhancing effects. This study focuses on investigating the potential of astragaloside IV (AIV), a triterpenoid saponin with proven acetylcholinesterase (AChE)-inhibiting activity naturally occurring in the root of Astragalus mongholicus, to attenuate memory impairment. Scopolamine (SCOP), an antagonist of muscarinic cholinergic receptors, and lipopolysaccharide (LPS), a trigger of neuroinflammation, were used to impair memory processes in the passive avoidance (PA) test in mice. This memory impairment in SCOP-treated mice was attenuated by prior intraperitoneal (ip) administration of AIV at a dose of 25 mg/kg. The attenuation of memory impairment by LPS was not observed. It can therefore be assumed that AIV does not reverse memory impairment by anti-inflammatory mechanisms, although this needs to be further verified. All doses of AIV tested did not affect baseline locomotor activity in mice. In the post mortem analysis by mass spectrometry of the body tissue of the mice, the highest content of AIV was found in the kidneys, then in the spleen and liver, and the lowest in the brain.


Saponins , Triterpenes , Humans , Animals , Mice , Acetylcholinesterase , Saponins/pharmacology , Triterpenes/pharmacology , Memory Disorders/drug therapy , Lipopolysaccharides/toxicity
9.
J Nat Prod ; 87(4): 935-947, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38575516

We report on the use of nitric oxide-mediated transcriptional activation (NOMETA) as an innovative means to detect and access new classes of microbial natural products encoded within silent biosynthetic gene clusters. A small library of termite nest- and mangrove-derived fungi and actinomyces was subjected to cultivation profiling using a miniaturized 24-well format approach (MATRIX) in the presence and absence of nitric oxide, with the resulting metabolomes subjected to comparative chemical analysis using UPLC-DAD and GNPS molecular networking. This strategy prompted study of Talaromyces sp. CMB-TN6F and Coccidiodes sp. CMB-TN39F, leading to discovery of the triterpene glycoside pullenvalenes A-D (1-4), featuring an unprecedented triterpene carbon skeleton and rare 6-O-methyl-N-acetyl-d-glucosaminyl glycoside residues. Structure elucidation of 1-4 was achieved by a combination of detailed spectroscopic analysis, chemical degradation, derivatization and synthesis, and biosynthetic considerations.


Aminoglycosides , Isoptera , Nitric Oxide , Triterpenes , Animals , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/metabolism , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Molecular Structure , Isoptera/microbiology , Aminoglycosides/pharmacology , Australia , Transcriptional Activation/drug effects , Fungi/metabolism , Talaromyces/chemistry , Talaromyces/metabolism , Actinomyces/metabolism , Actinomyces/drug effects
10.
J Nat Prod ; 87(4): 1036-1043, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38600636

Triterpenoids are a type of specialized metabolites that exhibit a wide range of biological activities. However, the availability of some minor triterpenoids in nature is limited, which has hindered our understanding of their pharmacological potential. To overcome this limitation, heterologous biosynthesis of triterpenoids in yeast has emerged as a promising and time-efficient production platform for obtaining these minor compounds. In this study, we analyzed the transcriptomic data of Enkianthus chinensis to identify one oxidosqualene cyclase (EcOSC) gene and four CYP716s. Through heterologous expression of these genes in yeast, nine natural pentacyclic triterpenoids, including three skeleton products (1-3) produced by one multifunctional OSC and six minor oxidation products (4-9) catalyzed by CYP716s, were obtained. Of note, we discovered that CYP716E60 could oxidize ursane-type and oleanane-type triterpenoids to produce 6ß-OH derivatives, marking the first confirmed C-6ß hydroxylation in an ursuane-type triterpenoid. Compound 9 showed moderate inhibitory activity against NO production and dose-dependently reduced IL-1ß and IL-6 production at the transcriptional and protein levels. Compounds 1, 2, 8, and 9 exhibited moderate hepatoprotective activity with the survival rates of HepG2 cells from 61% to 68% at 10 µM.


Anti-Inflammatory Agents , Cytochrome P-450 Enzyme System , Intramolecular Transferases , Triterpenes , Triterpenes/pharmacology , Triterpenes/chemistry , Humans , Cytochrome P-450 Enzyme System/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Molecular Structure , Saccharomyces cerevisiae , Hydroxylation , Hep G2 Cells , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Protective Agents/pharmacology , Protective Agents/chemistry
11.
Behav Brain Res ; 466: 114976, 2024 May 28.
Article En | MEDLINE | ID: mdl-38599249

Although there are various treatments available for depression, some patients may experience resistance to treatment or encounter adverse effects. Centella asiatica (C. asiatica) is an ancient medicinal herb used in Ayurvedic medicine for its rejuvenating, neuroprotective and psychoactive properties. This study aims to explore the antidepressant-like effects of the major constituents found in C. asiatica, i.e., asiatic acid, asiaticoside, madecassic acid, and madecassoside at three doses (1.25, 2.5, and 5 mg/kg, i.p), on the behavioural and cortisol level of unpredictable chronic stress (UCS) zebrafish model. Based on the findings from the behavioural study, the cortisol levels in the zebrafish body after treatment with the two most effective compounds were measured using enzyme-linked immunosorbent assay (ELISA). Furthermore, a molecular docking study was conducted to predict the inhibitory impact of the triterpenoid compounds on serotonin reuptake. The in vivo results indicate that madecassoside (1.25, 2.5, and 5 mg/kg), asiaticoside and asiatic acid (5 mg/kg) activated locomotor behaviour. Madecassoside at all tested doses and asiaticoside at 2.5 and 5 mg/kg significantly decreased cortisol levels compared to the stressed group, indicating the potential regulation effect of madecassoside and asiaticoside on the hypothalamic-pituitary-adrenal axis overactivity. This study highlights the potential benefits of madecassoside and asiaticoside in alleviating depressive symptoms through their positive effects on behaviour and the hypothalamic-pituitary-adrenal (HPA)- axis in a chronic unpredictable stress zebrafish model. Furthermore, the in silico study provided additional evidence to support these findings. These promising results suggest that C. asiatica may be a valuable and cost-effective therapeutic option for depression, and further research should be conducted to explore its potential benefits.


Antidepressive Agents , Centella , Molecular Docking Simulation , Pentacyclic Triterpenes , Triterpenes , Zebrafish , Animals , Triterpenes/pharmacology , Centella/chemistry , Antidepressive Agents/pharmacology , Pentacyclic Triterpenes/pharmacology , Hydrocortisone/metabolism , Disease Models, Animal , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Depression/drug therapy , Behavior, Animal/drug effects , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Biomarkers/metabolism , Male
12.
Org Lett ; 26(15): 3054-3059, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38557107

While pentacyclic triterpenoids have a rich history in chemistry and biology, the challenges associated with their asymmetric synthesis contribute to the current reality that medicinal exploration in the area is largely constrained to natural product derivatization. To address this deficiency, a function-oriented synthesis of pentacyclic triterpenoids was pursued. Overall, we report a divergent synthesis of 26-norgermanicol and 26-norlupeol and we have identified a new class of androgen receptor antagonist that is ∼6× more potent than lupeol.


Biological Products , Triterpenes , Pentacyclic Triterpenes , Triterpenes/pharmacology , Androgen Receptor Antagonists/pharmacology , Biological Products/pharmacology
13.
Front Biosci (Landmark Ed) ; 29(4): 160, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38682208

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a malignant tumor associated with Epstein-Barr virus (EBV) infection. Chemoradiotherapy is the mainstream treatment for locally advanced NPC, and chemotherapeutic drugs are an indispensable part of NPC treatment. However, the toxic side-effects of chemotherapy drugs limit their therapeutic value, and new chemotherapy drugs are urgently needed for NPC. Silvestrol, an emerging natural plant anticancer molecule, has shown promising antitumor activity in breast cancer, melanoma, liver cancer, and other tumor types by promoting apoptosis in cancer cells to a greater extent than in normal cells. However, the effects of silvestrol on NPC and its possible molecular mechanisms have yet to be fully explored. METHODS: Cell counting kit-8 (CCK-8), cell scratch, flow cytometry, 5-ethynyl-2'-deoxyuridine (EdU), and Western blot (WB) assays were used to evaluate the effects of silvestrol on the cell viability, cell cycle, apoptosis, and migration of NPC cells. RNA sequencing (RNA-Seq) was used to study the effect of extracellular signal-regulated kinase (ERK) inhibitors on the cell transcriptome, and immunohistochemistry (IHC) to assess protein expression levels in patient specimens. RESULTS: Silvestrol inhibited cell migration and DNA replication of NPC cells, while promoting the expression of cleaved caspase-3, apoptosis, and cell cycle arrest. Furthermore, silvestrol altered the level of ERK phosphorylation. The ERK-targeted inhibitor LY3214996 attenuated silvestrol-mediated inhibition of NPC cell proliferation but not migration. Analysis of RNA-Seq data and WB were used to identify and validate the downstream regulatory targets of silvestrol. Expression of GADD45A, RAP1A, and hexokinase-II (HK2) proteins was inhibited by silvestrol and LY3214996. Finally, IHC revealed that GADD45A, RAP1A, and HK2 protein expression was more abundant in cancer tissues than in non-tumor tissues. CONCLUSIONS: Silvestrol inhibits the proliferation of NPC cells by targeting ERK phosphorylation. However, the inhibition of NPC cell migration by silvestrol was independent of the Raf-MEK-ERK pathway. RAP1A, HK2, and GADD45A may be potential targets for the action of silvestrol.


Apoptosis , Benzofurans , Cell Movement , Cell Proliferation , MAP Kinase Signaling System , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Triterpenes , Humans , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/pathology , Cell Line, Tumor , Apoptosis/drug effects , MAP Kinase Signaling System/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/genetics , Triterpenes/pharmacology , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Survival/drug effects
14.
Ecotoxicol Environ Saf ; 276: 116316, 2024 May.
Article En | MEDLINE | ID: mdl-38615640

Aflatoxins B1 (AFB1) a dangerous type of aflatoxin, poses a serious threat to human health. Meanwhile, Taraxasterol, a bioactive compound in dandelion, exhibits strong anti-inflammatory and antioxidant activity. Therefore, the aim of this study was to investigate the impact of AFB1 on the intrinsic and extrinsic pathways of apoptosis, as well as evaluate the protective role of taraxasterol in the TM3 Leydig cell line. Cell viability was evaluated using an MTT assay, measuring the effects of 3.6 µM AFB1 and varying concentrations of taraxasterol. Expression levels of Caspase 3,8, and 9 were analyzed with RT-qPCR, and flow cytometry was used to assess cell cycle progression and apoptotic alterations. The findings of this study demonstrated that exposure to 3.6 µM of AFB1 resulted in an upregulation of Caspase 3 and Caspase 9 expression, indicating an activation of apoptotic pathways in TM3 cells. Additionally, the analysis of apoptosis revealed a significant increase in cellular apoptosis at this AFB1 concentration. However, when TM3 cells were exposed to 5 µM of taraxasterol, a downregulation of Caspase 3 and Caspase 9 expression was observed, suggesting a protective effect against apoptosis. Moreover, the apoptotic rate in TM3 cells was reduced in the presence of 5 µM of taraxasterol. Consequently, this study highlights the potential of taraxasterol as a protective agent against AFB1-induced apoptosis and suggest its potential application in regulating cell survival and apoptosis-related processes. Further investigations are necessary to elucidate the underlying mechanisms and evaluate the clinical implications of taraxasterol in the context of fertility disorders and other conditions associated with AFB1 exposure.


Aflatoxin B1 , Apoptosis , Cell Survival , Leydig Cells , Triterpenes , Aflatoxin B1/toxicity , Apoptosis/drug effects , Leydig Cells/drug effects , Animals , Cell Line , Cell Survival/drug effects , Mice , Male , Triterpenes/pharmacology , Sterols/pharmacology , Caspase 3/metabolism , Protective Agents/pharmacology , Caspase 9/metabolism
15.
J Chromatogr A ; 1723: 464716, 2024 May 24.
Article En | MEDLINE | ID: mdl-38640881

Saposhnikoviae Radix (SR) may enhance the pharmacodynamics of Huangqi Chifeng Tang (HQCFT) in the treatment of cerebral infarction according to our previous research, but the underlying mechanism is unknown. Herein, an in vivo pharmacokinetic assay in rats and in vitro MDCK-MDR1 cell assays were used to investigate the possible mechanism of SR, its main components, and its interactions with Astragali Radix (AR) and Paeoniae Radix (PR). An ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC‒MS/MS)-based analytical method for quantifying astragaloside IV (ASIV) and paeoniflorin (PAE) in microdialysis and transport samples was developed. The pharmacokinetic parameters of SR were determined using noncompartmental analyses CCK-8 assays were used to detect the cytotoxicity of ASIV, PAE, cimifugin (CIM), prim-o-glucosylcimifugin (POG) and their combinations. Moreover, drug transport was studied using MDCK-MDR1 cells. Western blotting was performed to measure the protein expression levels of P-GP and MRP1. Claudin-5, ZO-1, and F-actin expression was determined via immunohistochemical staining of MDCK-MDR1 cells. harmacokinetic studies revealed that, compared with those of Huangqi Chifeng Tang-Saposhnikoviae Radix (HQCFT-SR), the Tmax of ASIV increased by 11.11 %, and the MRT0-t and Tmax of PAE increased by 11.19 % and 20 %, respectively, in the HQCFT group. Transport studies revealed that when ASIV was coincubated with 28 µM CIM or POG, the apparent permeability coefficient (Papp) increased by 71.52 % and 50.33 %, respectively. Coincubation of PAE with 120 µM CIM or POG increased the Papp by 87.62 % and 60.95 %, respectively. Moreover, CIM and POG significantly downregulated P-gp and MRP1 (P < 0.05), inhibited the expression of Claudin-5, ZO-1, and F-actin (P < 0.05), and affected intercellular tight junctions (TJs). In conclusion, our study successfully established a selective, sensitive and reproducible UPLC‒MS/MS analytical method to detect drug‒drug interactions between SR, AR and PR in vivo and in vitro, which is beneficial for enhancing the therapeutic efficacies of AR and PR. Moreover, this study provides a theoretical basis for further research on the use of SR as a drug carrier.


Drugs, Chinese Herbal , Glucosides , Monoterpenes , Rats, Sprague-Dawley , Saponins , Tandem Mass Spectrometry , Triterpenes , Animals , Glucosides/pharmacokinetics , Glucosides/analysis , Glucosides/chemistry , Glucosides/pharmacology , Saponins/pharmacokinetics , Saponins/pharmacology , Saponins/chemistry , Saponins/analysis , Monoterpenes/analysis , Triterpenes/pharmacology , Triterpenes/pharmacokinetics , Triterpenes/chemistry , Triterpenes/analysis , Dogs , Rats , Madin Darby Canine Kidney Cells , Tandem Mass Spectrometry/methods , Male , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/pharmacokinetics , Chromatography, High Pressure Liquid/methods , Apiaceae/chemistry , Herb-Drug Interactions , Drug Interactions , Reproducibility of Results
16.
J Ethnopharmacol ; 330: 118235, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38648891

ETHNOPHARMACOLOGICAL RELEVANCE: Astragalus mongholicus Bunge (AM, recorded in http://www.worldfloraonline.org, 2023-08-03) is a kind of medicine food homology plant with a long medicinal history in China. Astragaloside III (AS-III) has immunomodulatory effects and is one of the most active components in AM. However, its underlying mechanism of action is still not fully explained. AIM OF THE STUDY: The research was designed to discuss the protective effects of AS-III on immunosuppression and to elucidate its prospective mechanism. MATERIALS AND METHODS: Molecular docking methods and network pharmacology analysis were used to comprehensively investigate potential targets and relative pathways for AS-III and immunosuppression. In order to study and verify the pharmacological activity and mechanism of AS-III in alleviating immunosuppression, immunosuppression mouse model induced by cyclophosphamide (CTX) in vivo and macrophage RAW264.7 cell model induced by hypoxia/lipopolysaccharide (LPS) in vitro were used. RESULTS: A total of 105 common targets were obtained from the AS-III-related and immunosuppression-related target networks. The results of network pharmacology and molecular docking demonstrate that AS-III may treat immunosuppression through by regulating glucose metabolism-related pathways such as regulation of lipolysis in adipocytes, carbohydrate digestion and absorption, cGMP-PKG signaling pathway, central carbon metabolism in cancer together with HIF-1 pathway. The results of molecular docking showed that AS-III has good binding relationship with LDHA, AKT1 and HIF1A. In CTX-induced immunosuppressive mouse model, AS-III had a significant protective effect on the reduction of body weight, immune organ index and hematological indices. It can also protect immune organs from damage. In addition, AS-III could significantly improve the expression of key proteins involved in energy metabolism and serum inflammatory factors. To further validate the animal results, an initial inflammatory/immune response model of macrophage RAW264.7 cells was constructed through hypoxia and LPS. AS-III improved the immune function of macrophages, reduced the release of NO, TNF-α, IL-1ß, PDHK-1, LDH, lactate, HK, PK and GLUT-1, and restored the decrease of ATP caused by hypoxia. Besides, AS-III was also demonstrated that it could inhibit the increase of HIF-1α, PDHK-1 and LDH by adding inhibitors and agonists. CONCLUSIONS: In this study, the main targets of AS-III for immunosuppressive therapy were initially analyzed. AS-III was systematically confirmed to attenuates immunosuppressive state through the HIF-1α/PDHK-1 pathway. These findings offer an experimental foundation for the use of AS-III as a potential candidate for the treatment of immunosuppression.


Molecular Docking Simulation , Network Pharmacology , Saponins , Animals , Mice , RAW 264.7 Cells , Saponins/pharmacology , Lipopolysaccharides , Male , Cyclophosphamide/pharmacology , Immunosuppressive Agents/pharmacology , Triterpenes/pharmacology , Signal Transduction/drug effects , Astragalus Plant/chemistry
17.
J Ethnopharmacol ; 330: 118225, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38670408

ETHNOPHARMACOLOGICAL RELEVANCE: Neuroinflammation is involved in the pathogenesis of depression disorder by activating microglia cells, increasing proinflammatory cytokines, effecting serotonin synthesis and metabolism, and neuronal apoptosis and neurogenesis. Arjunolic acid (ARG) is a triterpenoid derived from the fruits of Akebia trifoliata for treating psychiatric disorders in TCM clinic, which exhibits anti-inflammatory and neuroprotective effects. However, its anti-depressive effect and underlying mechanism are unknown. AIM OF THE STUDY: The aim of this study is to explore the effect of arjunolic acid on depression and its possible mechanisms. METHODS: Intraperitoneal injection of LPS in mice and LPS stimulated-BV2 microglia were utilized to set up in vivo and in vitro models. Behavioral tests, H&E staining and ELISA were employed to evaluate the effect of arjunolic acid on depression. RT-qPCR, immunofluorescence, molecular docking and Western blot were performed to elucidate the molecular mechanisms. RESULTS: Arjunolic acid dramatically ameliorated depressive behavior in LPS-induced mice. The levels of BDNF and 5-HT in the hippocampus of the mice were increased, while the number of iNOS + IBA1+ cells in the brain were decreased and Arg1+IBA1+ positive cells were increased after arjunolic acid treatment. In addition, arjunolic acid promoted the polarization of BV2 microglia from M1 to M2 type. Notably, drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA) and molecular docking technologies identified SIRT1 as the target of arjunolic acid. Moreover, after SIRT1 inhibition by using EX-527, the effects of arjunolic acid on ameliorating LPS-induced depressive behavior in mice and promoting M2 Microglia polarization were blocked. In addition, arjunolic acid activated AMPK and decreased Notch1 expression, however, inhibition of AMPK, the effect of arjunolic acid on the downregulation of Notch1 expression were weaken. CONCLUSIONS: This study elucidates that arjunolic acid suppressed neuroinflammation through modulating the SIRT1/AMPK/Notch1 signaling pathway. Our study demonstrates that arjunolic acid might serve as a potiential anti-depressant.


Depression , Lipopolysaccharides , Microglia , Receptor, Notch1 , Signal Transduction , Sirtuin 1 , Triterpenes , Animals , Microglia/drug effects , Microglia/metabolism , Triterpenes/pharmacology , Triterpenes/therapeutic use , Lipopolysaccharides/toxicity , Signal Transduction/drug effects , Sirtuin 1/metabolism , Mice , Male , Depression/drug therapy , Depression/chemically induced , Depression/metabolism , Receptor, Notch1/metabolism , AMP-Activated Protein Kinases/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Mice, Inbred C57BL , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Behavior, Animal/drug effects , Cell Line , Molecular Docking Simulation
18.
J Med Chem ; 67(9): 7176-7196, 2024 May 09.
Article En | MEDLINE | ID: mdl-38679872

Peroxiredoxin (PRDX1) is a tumor-overexpressed antioxidant enzyme for eliminating excessive reactive oxygen species (ROS) to protect tumor cells from oxidative damage. Herein, a series of celastrol urea derivatives were developed based on its cocrystal structure with PRDX1, with the aim of pursuing a PRDX1-specific inhibitor. Among them, derivative 15 displayed potent anti-PRDX1 activity (IC50 = 0.35 µM) and antiproliferative potency against colon cancer cells. It covalently bound to Cys-173 of PRDX1 (KD = 0.37 µM), which was secured by the cocrystal structure of PRDX1 with an analogue of 15 while exhibiting weak inhibitory effects on PRDX2-PRDX6 (IC50 > 50 µM), indicating excellent PRDX1 selectivity. Treatment with 15 dose-dependently decreased the mitochondria membrane potential of SW620 cells, probably due to ROS induced by PRDX1 inhibition, leading to cell apoptosis. In colorectal cancer cell xenograft model, it displayed potent antitumor efficacy with superior safety to celastrol. Collectively, 15 represents a promising PRDX1 selective inhibitor for the development of anticolorectal cancer agents.


Antineoplastic Agents , Colorectal Neoplasms , Pentacyclic Triterpenes , Peroxiredoxins , Urea , Humans , Peroxiredoxins/antagonists & inhibitors , Peroxiredoxins/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Pentacyclic Triterpenes/pharmacology , Pentacyclic Triterpenes/chemistry , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Urea/analogs & derivatives , Urea/pharmacology , Urea/chemistry , Cell Line, Tumor , Mice , Cell Proliferation/drug effects , Apoptosis/drug effects , Structure-Activity Relationship , Mice, Nude , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Mice, Inbred BALB C , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/chemical synthesis , Reactive Oxygen Species/metabolism , Drug Discovery , Membrane Potential, Mitochondrial/drug effects , Xenograft Model Antitumor Assays , Drug Screening Assays, Antitumor
19.
Antimicrob Agents Chemother ; 68(5): e0154523, 2024 May 02.
Article En | MEDLINE | ID: mdl-38557112

Ibrexafungerp (formerly SCY-078) is the first member of the triterpenoid class that prevents the synthesis of the fungal cell wall polymer ß-(1,3)-D-glucan by inhibiting the enzyme glucan synthase. We evaluated the in vivo efficacy of ibrexafungerp against pulmonary mucormycosis using an established murine model. Neutropenic mice were intratracheally infected with either Rhizopus delemar or Mucor circinelloides. Treatment with placebo (diluent control), ibrexafungerp (30 mg/kg, PO BID), liposomal amphotericin B (LAMB 10 mg/kg IV QD), posaconazole (PSC 30 mg/kg PO QD), or a combination of ibrexafungerp plus LAMB or ibrexafungerp plus PSC began 16 h post-infection and continued for 7 days for ibrexafungerp or PSC and through day 4 for LAMB. Ibrexafungerp was as effective as LAMB or PSC in prolonging median survival (range: 15 days to >21 days) and enhancing overall survival (30%-65%) vs placebo (9 days and 0%; P < 0.001) in mice infected with R. delemar. Furthermore, median survival and overall percent survival resulting from the combination of ibrexafungerp plus LAMB were significantly greater compared to all monotherapies (P ≤ 0.03). Similar survival results were observed in mice infected with M. circinelloides. Monotherapies also reduce the lung and brain fungal burden by ~0.5-1.0log10 conidial equivalents (CE)/g of tissue vs placebo in mice infected with R. delemar (P < 0.05), while a combination of ibrexafungerp plus LAMB lowered the fungal burden by ~0.5-1.5log10 CE/g compared to placebo or any of the monotherapy groups (P < 0.03). These results are promising and warrant continued investigation of ibrexafungerp as a novel treatment option against mucormycosis.


Amphotericin B , Antifungal Agents , Glycosides , Mucormycosis , Neutropenia , Triterpenes , Animals , Amphotericin B/therapeutic use , Amphotericin B/pharmacology , Mucormycosis/drug therapy , Mice , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Triterpenes/pharmacology , Triterpenes/therapeutic use , Neutropenia/drug therapy , Neutropenia/complications , Disease Models, Animal , Drug Therapy, Combination , Female , Rhizopus/drug effects , Lung Diseases, Fungal/drug therapy , Lung Diseases, Fungal/microbiology , Mucor/drug effects , Triazoles/therapeutic use , Triazoles/pharmacology
20.
APMIS ; 132(6): 452-464, 2024 Jun.
Article En | MEDLINE | ID: mdl-38563150

Multiple sclerosis (MS) is a condition where the central nervous system loses its myelin coating due to autoimmune inflammation. The experimental autoimmune encephalomyelitis (EAE) simulates some aspects of human MS. Boswellic acids are natural compounds derived from frankincense extract, known for their anti-inflammatory properties. The purpose of this research was to investigate therapeutic potential of boswellic acids. Mice were divided into three groups: low-dose (LD), high-dose (HD), and control groups (CTRL). Following EAE induction, the mice received daily doses of boswellic acid for 25 days. Brain tissue damage, clinical symptoms, and levels of TGF-ß, IFN-γ, and IL-17 cytokines in cell cultured supernatant of lymphocytes were assessed. Gene expression of transcription factors in brain was measured using real-time PCR. The levels of brain demyelination were significantly lower in the treatment groups compared to the CTRL group. Boswellic acid reduced the severity and duration of EAE symptoms. Furthermore, boswellic acid decreased the amounts of IFN-γ and IL-17, also the expression of T-bet and ROR-γt in brain. On the contrary, it increased the levels of TGF-ß and the expression FoxP3 and GATA3. Our findings suggest that boswellic acids possess therapeutic potential for EAE by modulating the immune response and reducing inflammation.


Encephalomyelitis, Autoimmune, Experimental , Triterpenes , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Triterpenes/pharmacology , Triterpenes/therapeutic use , Mice , Female , Mice, Inbred C57BL , Brain/drug effects , Brain/pathology , Brain/metabolism , Brain/immunology , Cytokines/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Immunomodulating Agents/pharmacology , Immunomodulating Agents/therapeutic use , Interleukin-17/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
...